Teaching Detained Juveniles About Their Brains: A Study on a Novel Brain-Health Intervention at the St. Joseph Juvenile Justice Center

Meredith Hollender

Background

- Children constantly learn and adapt to their context, including the context of poverty
- Mechanisms underlying adaptation to the high-stress environment of poverty allow brain and behavior to adapt.¹ Living in poverty leads to...
 - Poor academic achievement^{2,3}, reduced attentional control^{3,4}, poor emotional regulation, impaired prosocial attributes^{2,3,4}
 - Smaller cortical white and gray matter, and hippocampal and amygdalar volumes^{5,6}
- Despite these dismal findings, the young brain is plastic, and the adaptation to the chronic stressor of poverty can be slowed or reversed by interventions in adolescence
 - Paunesku et al. 2015⁷
 - o Good, Aronson, & Inzlicht 2003⁸
 - o Seroczynski et al. 20169
- Detained juveniles are often from backgrounds of poverty and/or high-stress home environments, so there should be interventions to target that group¹⁰

Timeline

- Spring 2016 Spring 2017
 - Developed the intervention via literature searches and observations during volunteering
 - Developed the scale in conjunction with Center for Social Research
 - Obtain IRB approval
- Fall of 2017 Spring of 2018
 - Teach intervention and evaluate scale using statistical methods

Brain Health Intervention

- 4, 30-minute lessons on M/W/F mornings
- Each lesson focused on a specific attribute that I felt was important for the juveniles to understand, based on my observations as well as literature searches

Table 1. Learning goal for each of the four lessons in the BHI.

Lesson	Learning Goal
1 – Anatomy/Function	Be able to identify the brain structures that create and/or regulate emotion. Understand the functional role of the PFC and amygdala.
2 – Emotional Regulation	Develop the ability to identify how one is feeling. Recognize how the balance between the PFC and amygdala function determines one's response.
3 – Neural Plasticity	Understand how one is changing the connections between the PFC and amygdala. Recognize the concept of neural plasticity and that every choice changes the brain.
4 – Neuronal Development	Evaluate long-term goals and how those align with certain types of behavior (i.e. not coming back to the JJC). Establish the idea of choice in behavior and resultant outcomes.

Scale

- Developed the Brain Health Intervention Scale (BHIS)
- 31 affirm/deny statements designed to measure knowledge gained or opinion changed by the participant about the brain
 - One validity check ("I understand what the cortical homunculus is")
 - Other 30 statements were divided into 4 attributes that reflected 4 sections of the course
- Example statements
 - "I understand what a neuron does" (Anatomy)
 - "I can control my emotions" (Emotional regulation)
 - "I want strong connections in my brain between the amygdala and the prefrontal cortex" (Neural plasticity)
 - "The environment in which I grew up shaped my brain" (Neuronal development)

Participants

Table 2.	Sample	Characteristics	for	Intervention	n Group.
----------	--------	-----------------	-----	--------------	----------

Characteristic	n	%
Age		
13-14	4	15.38%
15-16	16	61.54%
17-18	5	19.23%
19+	1	3.85%
Average household income by ZIP		
Code		
<\$40,000	13	50%
>\$40,000	13	50%
Gender		
Female	9	34.62%
Male	17	65.38%
Race		
Minority	20	76.92%
Non-minority	6	23.08%
Highest offense level filed		
Misdemeanor	9	34.62%
Felony	15	57.69%
Number of previous detainments		
<3	11	42.31%
3+	15	57.69%
ACE Score		
<3	4	15.38%
3+	21	80.77%

Results

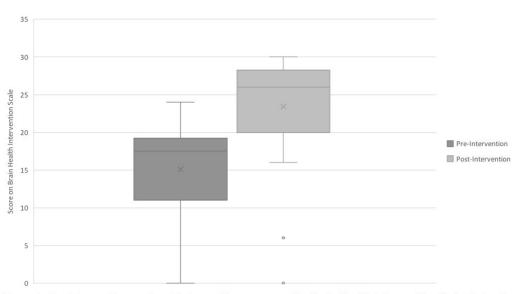


Figure 1. Pre-intervention and post-intervention scores on the Brain Health Intervention Scale. Paired t-test indicates post-intervention scores (M = 23.42, SD = 7.23) are significantly greater than pre-intervention scores [M = 15.12, SD = 7.17; t(25) = 8.44, p<0.01].

Results

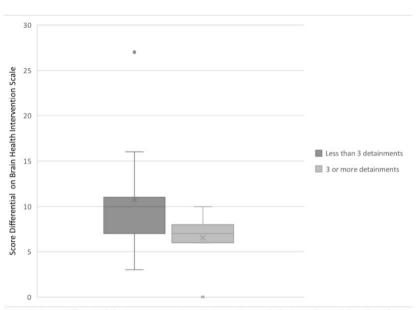


Figure 2. Score differentials between pre- and post-intervention scale for juveniles with less than three detainments versus three or more detainments. Unpaired t-test indicates juveniles with less than three detainments (M = 10.73, SD = 6.31) had a significantly greater score differential compared to juveniles with three or more detainments (M = 6.53, SD = 2.92; t(24) = 2.27, p<0.05).

Conclusions

- Finding is in agreement with Seroczynski's 2016 study, which found in its pilot trial that the program would have the most impact on recidivism rates in first-time offenders
 - Hypothesized juveniles who already had a history with the justice system may be "jaded"^{9,11}
- Point to need for diversion programs that involve cognitive and behavioral aspects
- Finding an answer to decreasing the effects of poverty on the developing brain of adolescents is of public health and economic concern¹⁴
 - Detention is more expensive than diversion
 - Detention doesn't lower crime rates

Take-home message

- 100,000 juveniles detained right now in the U.S.
- Is detention the right place for an adolescent to learn from their mistakes?
- It is advantageous to intervene during adolescent period of marked neural plasticity

Thank you!

Especially to my friends, family, and advisor, Dr. Nancy Michael

Questions?

Works Cited

Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children, 7(2), 55-71.

Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., Hurt, H. (2006). Childhood poverty: specific associations with neurocognitive development. *Brain Research*, 1110(1), 166-174. doi:10.1016/j.brainres.2006.06.072

Farah, M. J. (2017). The Neuroscience of Socioeconomic Status: Correlates, Causes, and Consequences.

Good, C., Aronson, J., Inzlicht M. (2003). Improving adolescents' standardized test performance: An intervention to reduce the effects of stereotype threat. *Applied Developmental Psychology*, 24, 645 – 662. doi:10.1016/j.appdev.2003.09.002

Holman, B., & Ziedenberg, J. (2006). The Dangers of Detention: The Impact of Incarcerating Youth in Detention and Other Secure Facilities. *Justice Policy Institute*. Kashani, J. H., Manning, G. W., McKnew, D. H., Cytryn, L., Simonds, J. F., & Wooderson, P. C. (1980). Depression among incarcerated delinquents. *Psychiatry Res*, *3*(2), 185-191.

Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., . . . Barch, D. (2013). The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. *JAMA Pediatrics*, 167(12), 1135-1142. doi:10.1001/jamapediatrics.2013.3139

Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. *Developmental Science*, 15(4), 516-527. doi:10.1111/j.1467-7687.2012.01147.x

Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. *Developmental Science*, 10(4), 464-480. doi:10.1111/j.1467-7687.2007.00600.x

Paunesku, D., Walton, G. M., Romero, C., Smith, E. N., Yeager, D. S., & Dweck, C. S. (2015). Mind-set interventions are a scalable treatment for academic underachievement. *Psychol Sci, 26*(6), 784-793. doi:10.1177/0956797615571017

Perez, N. M., Jennings, W. G., & Baglivio, M. T. . (2016). A Path to Serious, Violent, Chronic Delinquency: The Harmful Aftermath of Adverse Childhood Experiences. *Crime & Delinquency, 64*(1), 3-25. doi:10.1177/0011128716684806

Petteruti, A., Velazquez, T., & Walsh, N. (2009). The Costs of Confinement: Why Good Juvenile Justice Policies Make Good Fiscal Sense. Justice Policy Institute.

Seroczynski, A. D., Evans, W. N., Jobst, A.D., Horvath, L., & Carozza, G. (2016). Reading For Life and Adolescent Re-Arrest: Evaluating a Unique Juvenile Diversion Program. *Journal of Policy Analysis and Management*, 35(3), 662-682. doi:10.1002/pam.21916

Stokes, M. L., McCoy, K. P., Abram, K. M., Byck, G. R., & Teplin, L. A. (2015). Suicidal Ideation and Behavior in Youth in the Juvenile Justice System: A Review of the Literature. *J Correct Health Care*, 21(3), 222-242. doi:10.1177/1078345815587001